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TELECOMMUNICATIONS ENGINEERING APPLICATIONS

All-Band 2G+3G Radial Disc-Cone Antennas:
Design, Construction and Measurements

  N.I. Yannopoulou, P.E. Zimourtopoulos, E.T. Sarris *

Antennas Research Group, Austria — Hellas [1, 2]
EECE Dept, Democritus University of Thrace, Hellas [2 and 3]

Abstract

We define as "All-Band 2G+3G" any band that includes all
frequencies allocated to both 2G and 3G services. We define
as "Radial Disc-Cone Antenna RDCA" any discone antenna with a
structure of radial wires. The RDCA was theoretically ana-
lyzed and software simulated with the purpose of computation-
ally design a broadband model of it. As an application, a
broadband RDCA for operation from 800 to 3,000 MHz, which in-
clude all 2G and 3G frequencies, was designed and an experi-
mental model was constructed and tested. In order to evaluate
the agreement between theory and practice, mathematically ex-
pressed measurement error bounds were computed.

Introduction

In 1945, Kandoian invented
the  well-known  discone  an-
tenna, that is a dipole made
of a disc above a cone [1].
In 1953, Nail gave experimen-
tally two naive relations for
the discone dimensions [2].

In  1987,  Rappaport  de-
signed  discones  using  an
N-type connector feed [3]. In
1993, Cooke studied a discone
with  a  structure  of  radial
wires  [4].  In  2005,  Kim  et
al. presented a double radial
discone  antenna  for  Ultra
Wide-Band applications [5].

In  this  short  paper  we
present an All-Band 2G+3G RDCA
fed  by  an  N—type/Female/50—
Ohm connector.

Research

The RDCA was theoretically
analyzed as a group of iden-
tical  filamentary  V-dipoles
with  unequal  arms  connected
in parallel. The dipoles re-
cline on equiangular vertical
phi-planes  around  z-axis  to
form  a  disconical array.
Fig.1A shows two such copla-
nar  dipoles  conformed  with
the  apex  angle  a.  Each
V-dipole has a total length L
equal  to  the  sum  of  arm
lengths r and s plus the gap
g between its terminals.

The  simulation  was  based
on a suite of developed vis-
ual tools which are supported
by  a  fully  analyzed,  cor-
rected  and  redeveloped  edi-
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tion  of  the  original  thin-
wire computer program by J.H.
Richmond [6].

Two  arithmetic  criteria
were adopted  for the broad-
band  characterization  of  a
model:

(1) 50-Ohm VSWR lower than 2

(2) Normalized radiation
    intensity U/Umax lower
    than 3 dB on the 
    horizontal plane.

A visual application pro-
gram was specifically devel-
oped  to  design  a  broadband
radial  discone  with  bare
wires of diameter d embedded
in free space when the wire
conductivity,  the  type  of
feeding  connector  and  the
frequency band are given.

The program uses the model
of a radial discone fed by an
N-type  connector  shown  in
Fig.2. Starting  with an ap-
propriate combination of the
relations  given  by  [2]-[4]
the program computes by iter-
ation in terms of  wavelength
λ, the geometric characteris-
tics  r,  s,  g,  a,  of  the
broadband  model,  just  when
the criteria are satisfied.

Fig.1B  shows  a  Ground
Plane  Antenna  GPA  that  was
designed  for  reference  and
consists of  equal number of
cone radials s and a vertical
monopole with height r.

As a practical application
of the broadband design, the
2G+3G band from 800 to 2,500

MHz  was  selected  to  begin
with and an experimental ra-
dial discone of  copper wire
fed by N-type  connector was
built, as shown in Fig.3.

 
Fig.1: A — RDCA, B — GPA

Fig.2: RDCA — Designed Model
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In  order  to  demonstrate
the  particular  behavior  of
the  experimental  model,  the
2G+3G  band  was  divided  as
follows:

  2G+3G Sub-Bands  
800 MHz — 2,500 MHz

Sub-Band MHz

I 806 — 960

II 1,429 — 1,513

III 1,710 — 1,900

IV 1,910 — 2,025

V 2,110 — 2,170

VI 2,400 — 2,499

Our  measurement  system
consists  of  an  EM  anechoic
chamber, a network analyzer,
a number of  support instru-
ments,  a  set  of  standard
loads of factory accuracy and
a  constructed  antenna  rota-
tion mechanism with  a built
hardware control unit of its
step  motor.  The  combined
characteristics  of  system
parts  specify  a  measurement
band  from  600  to  1300  MHz,
which overlaps with the 2G/3G
band. Developed control soft-
ware synchronizes the system
and collects data  using the
IEEE-488 protocol.

A developed general mathe-
matical method expresses the
measurement error bounds. An-
other set of developed soft-
ware  applications  processes
the collected data  and com-
putes the error bounds.

Results

The  consideration  of  ra-
dial discone as an array of
at  least  eight  8  V-dipoles
produces  a  theta-polarized
vector radiation pattern with
magnitude a surface almost by
revolution around z-axis. So
the radial discone has indeed
on  the horizontal plane  xOy
the  basic  properties  of  a
vertically  polarized  almost
omni-directional  antenna,
that is a fact that encour-
aged the design of a broad-
band  model by using  simula-
tion.

The  application  of  the
broadband  criteria  to  2G/3G
band  resulted to the  design
of a RDCA with the following
geometrical characteristics:

All-Band 2G+3G RDCA
800 MHz — 3,000 MHz

Geometry Units

d 1.5 [mm]

r 44 [mm]

g 6 [mm]

s 125 [mm]

a 60 [°]

The RDCA operates from 800
to  3,000 MHz, which  exceeds
that of 2G+3G band. The ac-
cordingly constructed experi-
mental  radial  discone  of
Fig.3 should be implied with
a constructional tolerance of
±0.5 mm and ±0.5°.
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Fig.3: RDCA experimental model

The broadband model has a
directivity  from  about  –0.5
to 2.9 dBd with slope angle
between  –65°  and  +58°,  but
the directivity gain on hori-
zontal plane stays very close
to the desirable value of 0
dBi, since it changes from –1
to +1.7 dBi only. Fig.4 shows
that the predicted horizontal
normalized  radiation  inten-
sity remains below 3 dB in-
deed, while it stays above 0
dB relative to the reference
antenna  in  all  2G+3G  sub-
bands indicated by the verti-
cal  gray  strips,  when  both
are  fed  by  the  same  50-Ohm
source.

Fig.4: Predicted radiation intensity on horizontal plane.
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Fig.5A shows the predicted
normalized radiation patterns
in dB at the center of each
sub-band, which confirms the
horizontal  omni-directional
radiation  properties  of  the
broadband model.

At the center frequency of
950  MHz  of  the  measurement
band, the predicted and mea-
sured radiation intensity on
the  three  main  cuts  of  the
radiation pattern are in good

agreement, as shown in Fig.
5B.

This  is  made  clearer  by
the measurement error bounds
on a vertical plane as shown
in Fig.6. 

Fig.7 shows that the 50-
Ohm  VSWR  predicted  results
for the broadband discone are
below  2  indeed  and  almost
covered by the error bounds
in the measurement band.

Fig.6: Measurement error bounds on a vertical plane 
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Fig.5: A (Up) Predicted normalized radiation intensity patterns
at the center of each 2G+3G sub-band — B (Down) Normalized

radiation intensity pattern at the center of measurements band
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Fig.7: Standing wave ratio against frequency or ratio of total
length to wavelength

Conclusion

Prediction  and  experimen-
tation  in  the  measurement
band  600  MHz  to  1,300  MHz
proposes  a  successfully  de-

signed, constructed, and mea-
sured  Radial  Disk  Cone  An-
tenna RDCA  capable to serve
All-Band  2G+3G  applications
from 800 MHz to 3,000 MHz.
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TELECOMMUNICATIONS ENGINEERING MÉTROLOGIE

Measurement Uncertainty in Network Analyzers:
Differential Error Analysis of Error Models

Part 1: Full One-Port Calibration

  N.I. Yannopoulou, P.E. Zimourtopoulos *

Antennas Research Group, Austria — Hellas [1, 2]
EECE Dept, Democritus University of Thrace, Hellas [2]

Abstract

An analytical method was developed to estimate errors in
quantities depended on full one-port vector network analyzer
(VNA) measurements using differentials and a complex differ-
ential  error  region  (DER)  was  defined.  To  evaluate  the
method, differences instead of differentials were placed over
a DER which was then analyzed and compared with another com-
monly used estimated error. Two real differential error in-
tervals (DEIs) were defined by the greatest lower and least
upper bounds of DER projections. To demonstrate the method, a
typical device under test (DUT) was built and tested against
frequency. Practically, a DER and its DEIs are solely based
on manufacturer's data for standard loads and their uncer-
tainties, measured values and their inaccuracies. 

Introduction

In full one-port measure-
ments with a VNA of real charac-
teristic impedance Z0, a DUT
with impedance Z has a reflec-
tion coefficient ρ defined by

ρ = (Z – Z0)/(Z + Z0)

and related to its measured
value m by the bilinear trans-
formation

ρ = (m – D)/[M(m – D) + R]

in terms of errors D, M and R
[1]. This transformation can be
uniquely determined from given
distinct ρn, n = 1, 2, 3 and re-
spectively known mk, k = n [2].

Research

We considered ρn, mk as the
elements  of  given  ordered
triples (A, B, C), (a, b, c),
solved  the  resulting  system
and  appropriately expressed
its solution by 

F = ∑ cC(B – A)

D = ∑ abC(A – B)/F

M = ∑ c(B – A)/F

R = [∏ (A – B)(a – b)]/F2

where  ∑ and  ∏ produce  two
more  terms  from  the  one
shown, by rotation of the or-
dered triple elements. These
errors  were  then  considered
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as depended  on the indepen-
dent variables ρn, mk. There-
fore,  their  differentials
were  expressed  in  the  same
manner by

dD = [∏ (a – b) ∑ (B – C)BC dA 

   + ∑ (b – c)2(B – A)(C – A)

    BC da]/F2 

dM = [∑ (a – b)(c – a)(B – C)2dA 

   – ∏ (A – B) ∑ (b – c)da]/F2

dR = {∑ [F + 2(a – b)B(A – C)]

    [(B – C)2dA ∏ (a – b) 

   – (b – c)2da ∏ (A – B)]}/F3 

After that, the differential
of ρ was expressed by 

dρ = [–RdD – (m – D)2dM – (m – D)dR

   + Rdm]/[M(m – D) + R]2 

and was considered depended,
through dD, dM and dR, on L =
7  independent  variables  and
their  independent  differen-
tials: ρn, n = 1, 2, 3 and mk,
k = n or k = 0 with m0 = m. 

The developed expressions
were  mechanically  verified
using  a  developed software
program for symbolic computa-
tions.

Manufacturer's  data  for
standard loads used in full-
one port VNA measurements are
substituted  in  ρn,  and  for
their  uncertainties  in  dρn.
Since  Z0 is real, the domain
of each ρn  is the closed unit
circle [3]. For |ρn| = 0 or 1,
care must be exercised to re-
strict its differential value
onto its domain. The VNA mea-

surements  have  specified
bounded ranges for their mo-
dulus and argument,  so that
the  domain  of  each  mk is  a
bounded circular annular with

its center at the origin Ο of
the  complex  plane.  Measure-
ment data are substituted in
mk and  manufacturer's  data
for measurement inaccuracy in
dmk. Uncertainty and inaccu-
racy data outline domains for

dρn and dmk .If z = |r|e
jφ
, stands

for  any  of  the  independent
variables and dz for its dif-
ferential then the contribu-
tion of dz to dρ is a summa-
tion  term  of  the  form  Wdz,

with W = |U|e
jV
, so that

Wdz = |U|e
j(V + φ)

d|r| 

    + |U|e
j(V + φ + π/2)

|r|dϕ 

where W is in fact a known
value of the respective par-

tial derivative and d|r|, dϕ

are the independent real dif-
ferentials of the complex dz
in polar form.  Each expres-
sion Wdz outlines  a contour

for a partial DER around  Ο.

If z ≠ 0, the partial DER is a
parallelogram with perpendic-

ular  sides  d|r|  and  |r|dϕ,
stretched or contracted by |U|

and rotated by (V + ϕ) around

Ο. If z = ρn  = 0, the partial
DER is  a circle with radius
|U|d|r|.  Accordingly,  a  DER
is the sum of either L paral-
lelograms or (L – 1) parallel-
ograms and 1 circle. DER is
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then a convex set with con-
tour either a polygonal line
with 4L vertices at most, or
a piecewise curve composed of
4(L – 1) line segments and 4(L
– 1) circular arcs at most.
The greatest lower and least
upper  differential  error
bounds are the end-points of
DEIs for the real and imagi-
nary parts of dρ and result
from the projections  of DER
for ρ on the coordinate axes.

These conclusions can be ge-
neralized for any other quan-
tity  directly  or  indirectly
depended on all, some or just
one of the above independent
variables and their differen-
tials. Thus, the quantity has
an L-term DER, where 7 ≥ L ≥ 1.
For example, the impedance Z
of a DUT has the 7-term DER: 

dZ = 2Z0dρ/(1 – ρ)2 

Results

All of the following data
are specified by manufactur-
ers of the parts for our mea-
surement system. This system
operates from 1 to 1300 MHz
with 100 Hz PLL stability and

consists of a type-N Z0 = 50 Ω

network analyzer, a number of
support instruments and a set
of standard loads. The stan-
dards are: a short circuit A,
a  matching  load  B  with  re-
flection  coefficient  0.029
and  an  open  circuit  C  with
reflection  coefficient  0.99
and  phase  accuracy  ±2°.  In
the absence of manufacturer's

data for A we considered its
uncertainty equal to that of
C.  So, the following  values
were  substituted in the  de-
veloped expressions: 

A = –1, 0 ≤ d|A| ≤ 0.01, –180° ≤

dϕA ≤ –178° or 178° ≤ dϕA ≤ 180°,

B = 0, |dB| = 0.029, 

C = 1, –0.01 ≤ d|C| ≤ 0, –2° ≤ dϕC
≤ +2° 

The annular domain for mk

of VNA is specified from 0 to
–70  db  in  modulus  and  ±180
degrees in argument. Measure-
ments mk result with a deci-
mal floating point precision
of 4 digits, for both modulus
and argument. We consider the
modulus  and  argument  of  dmk

equal to ±1/2 of the unit in
the last place of the corre-
sponding mantissa in modulus
and  argument  of  mk Conse-
quently, our system produces
a DER, either for ρ or Z, as
a sum of (L – 1) = 6 parallelo-
grams  and  1  circle,  with  a
contour of (4L + 4L) = 48 ver-
tices at most. 

A suite of developed soft-
ware  applications:  (i)  con-
trols the system and collects
the  data  in  terms  of  fre-
quency  using  the  IEEE-488
protocol, (ii) processes the
collected  data  and  computes
the vertices of DER and the
end-points of its DEIs (iii)
sketches pictures of DER for
ρ and Z in terms of the fre-
quency steps and make a film
using them as frames.
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Fig.1: A typical DER for the impedance Z

Fig.2: DER for the reflection coefficient ρ and for its
associated impedance Z against frequency
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Fig.3: Greatest lower and least upper differential error
bounds for resistance R and reactance X against frequency

A typical resistor with a

nominal DC impedance of 50 Ω

±20%  tolerance  was  soldered
on  a  type-N  base  connector
and enclosed in an aluminium
box to serve as a simple DUT
for testing its Z from 2 to
1289 MHz in 13 MHz steps. The
center frequency fC = 639 MHz
was chosen to reveal the de-
tails of the proposed method
in Fig.1, where  the contour
of  a  typical  DER  for  Z  is
outlined  with  small  circles
as its vertices. This contour
surrounds that of the 4-terms
DER due to inaccuracy of mea-
surements (1) and that of 3-

terms DER for the uncertainty
of loads (2). A properly cir-
cumscribed  rectangle  of  DER
shows  graphically  how  the
DEIs for R and X result. The
commonly used error from the
matching  load only is  shown
as a dotted circle. This is
in fact a 1-term DER which is
surrounded  from  the  contour
of  the  DER  by  a  factor  of
about 125% to 185% in all di-
rections.  Finally,  in  the
same figure, 27x2 differences
∆Z  resulting  from  the  same
dρn and dmk, dense enough to
appear  as  stripes,  were
placed  over  DER  to  compare
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them  with  differential  dZ
values.  Notably,  almost  all
of  ∆Z  values  are  belong  to
DER  while  the  computation
time  for  these  ∆Z  exceeds
that for DER by more than one
order of magnitude. To demon-
strate the method, a set of
selected DER frames for ρ and
Z  are  shown  in  Fig.2,  as
beads on  space curved fila-
ments against frequency. 

Finally, the computed DEIs
for  R  and  X  are  shown  in
Fig.3 against frequency. 

Conclusion

The proposed method may be
efficiently used in the same
way, to successfully estimate
errors  in  any  quantity  de-
pended on full one-port vec-
tor network analyzer measure-
ments.
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Abstract

Since S–parameter measurements without uncertainty cannot
claim any credibility,  the uncertainties in  full two–port
Vector Network Analyzer (VNA) measurements were estimated us-
ing total complex differentials (Total Differential Errors).
To express precisely a comparison relation between complex
differential errors, their differential error regions (DERs)
were used. To demonstrate the method in the most accurate
case of a direct zero–length thru, practical results are pre-
sented for commonly used Z–parameters of a simple, two–port,
DC resistive T–network, which was built and tested against
frequency  with  a  VNA  measurement  system  extended  by  two
lengthy transmission lines. 

Introduction

It is well known that in
full  two–port  VNA  measure-
ments the S–parameters for a
two–port  Device  Under  Test
(DUT) are given in terms of
their 4 measurements mij, i = 1,

2, j = 1, 2 by 

S11 = {[(m11 – D)/R][1 + (m22 

   –D')M'/R'] – L(m21 – X)(m12
   – X')/(TT')}/H (1)

S21 = {[1 + (m22 – D')(M' – L)/R']

      (m21 – X)/T}/H (2)

H = [1 + (m11 – D)M/R][1 + (m22 

  – D')M'/R'] – LL'(m21 – X)(m12
  – X')/(TT') (3)

S22, S12 have  expressions

that  result from (1)–(2)  by
substituting  i, j  with  j, i
and D, M, R, L, T, X with D',
M', R', T', L', X' and vice–
versa  [1]. These 12  quanti-
ties  have  been  defined  as
system  errors  [2].  Stumper
gave  non–generalized  expres-
sions for the partial devia-
tions of S–parameters due to
calibration  standard  uncer-
tainties,  in 2003 [3].  Fur-
thermore, the developed total
differential errors for full
one–port VNA measurements [4]
are  also not generalized  in
the  two–port  case.  To  the
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best of  the authors' knowl-
edge, there are no analytical
expressions for total differ-
ential  errors  in  full  two–
port VNA measurements. 

Research

Since  S–parameters  are
functions of 16 complex vari-
ables, their total differen-
tial  errors  were  initially
expressed as 

dS11 = {T T'(1 – MS11)[R' + M'(m22 – D')](dm11 – dD)

    – RR'L(1 – L'S11)[(m21 
– X)(dm12 

– dX') + (m12 – X')(dm21 – dX)]

    + M'T T'[(m11 – D)(1 – MS11) – RS11](dm22 – dD') 

    – T T'S11(m11 – D)[R' + M'(m22 – D')]dM 

    + T T'(m22 – D')[(m11 – D)(1 – MS11) – RS11]dM' 

    – (R'L(1 – L'S11)(m12 – X')(m21 – X) +

    + T T'S11[R' + M'(m22 – D')])dR 

    – (RL(1 – L'S11)(m12 – X')(m21 – X) 

    – T T'[(m11 – D)(1 – MS11) – RS11])dR' 

    – RR'(m12 – X')(m21 – X)[(1 – L'S11)dL – LS11dL']

    + [(m11 – D)(1 – MS11) – RS11][R' + M'(m22 – D')]

      (T'dT+TdT')}/P (4)

dS21 = {– MT T'S21[R' + M'(m22 – D')](dm11 – dD) 

    + RR'LL'S21(m21 – X)(dm12 – dX') 

    + R{T'[R' + (m22 – D')(M' – L)] + R'LL'S21(m12 – X')}(dm21 – dX)

    + T'(R(m21 – X)(M' – L) – M'TS21[R + M(m11 – D)])(dm22 – dD') 

    – T T'S21(m11 – D)[R' + M'(m22 – D')]dM 

    + T'(m22 – D')(R(m21 – X) – TS21[R + M(m11 – D)])dM' 

+ {(m21 – X)(T'(m22 – D')(M' – L) + R'[T' + LL'S21(m12 – X')])

    – T T'S21[R' + M'(m22 – D')]}dR

    + (R(m21 – X)[T' + LL'S21(m12 – X')]

    – T T'S21[R + M(m11 – D)])dR'

    + R(m21 – X)[R'L'S21(m12 – X') – T'(m22 – D')]dL

    + RR'LS21(m12 – X')(m21 – X)dL'

    – T'S21[R + M(m11 – D)][R' + M'(m22 – D')]dT

    + (R(m21 – X)[R' + (m22 – D')(M' – L)]

    – TS21[R + M(m11 – D)][R' + M'(m22 – D')])dT'}/P (5)
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P = T T'[R' + M'(m22 – D')][R + M(m11 – D)]

  – RR'LL'(m12 – X')(m21 – X) (6)

dS22 and dS12 resulted from

(4), (5) with  the mentioned
substitutions.  X,  X'  errors
stand for crosstalk measure-
ments. D, M, R (D', M', R') er-
rors are uniquely determined
in terms of 3 standard loads
A, B, C (A', B', C') and their
3 measurements a, b, c (a', b',
c'), by full one–port VNA mea-
surements, so the  number of
independent complex variables
increases from 16 to 22. L, T
(L', T') errors are accurately
determined after the replace-
ment  of  DUT  with  a  direct
thru (or approximately, if an
adapter is used  instead) in
terms  of  new  measurements
t11, t21 (t22, t12) and of previ-

ously found quantities. Their
expressions  were  appropri-
ately stated as 

L = [∑ (ab + ct11)C(B – A)]/E (7)

T = (t21 – X)[∏ (A – B)(a – b)]/

   (E [∑ cC(B – A)]) (8)

E = ∑ (ab + ct11)(B – A) (9)

where ∑ and ∏ produce two more
terms, from the given one, by
cyclic  rotation of the  let-
ters a, b, c (a', b', c') or A,
B, C (A', B', C'). In this way,
each S–parameter has as total
differential error dS, a sum
of 22 differential terms:

16 due to measurement inaccu-
racies dmij, dX, dX', dtij, da,

db, dc, da', db', dc' and 6 due
to  standard  uncertainties
given  by  their  manufacturer
dA, dB, dC, dA', dB', dC'. The
expressions  for  dD, dM, dR
(dD', dM', dR') are known [4].
The expressions for the rest
of  differential  errors  were
developed as 

dL = {∑ (B – C)(b – t11)(c – t11)[(B – C)(b – a)(c – a)dA

   – (b – c)(B – A)(C – A)da] + [∏ (A – B)(a – b)] dt11}/E
2 (10)

dT = {∑ (t21 – X)(b – c)(B – C)[(t11 – c)(b – a)2B(A2 + C2)

   + (b – t11)(c – a)2C(A2 + B2) – 2ABC(b – c)(t11(b + c – 2a)

   – bc + a2)][(B – C)(b – a)(c – a)dA 

   – (b – c)(B – A)(C – A)da]}/(E2 [∑ cC(B – A)]2)
   + [∏ (A – B)(a – b)]{[(t21 – X) ∑ a(B – C)/E]dt11
   + dt21 – dX}/(E [∑ cC(B – A)]) (11)
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Each  complex  differential
error defines a Differential
Error  Region  (DER)  on  the
complex  plane  with  projec-
tions to coordinate axes the
Differential  Error  Intervals
(DEIs)  [4].  Obviously,  any

quantity  differentiably  de-
pendent  on  the  above  vari-
ables has also a DER. For ex-
ample, after another correc-
tion to the given S to Z–pa-
rameters  relations  [5],  the
Z–DERs are resulted from 

dZ11 = 2Z0[(1 – S22)
2dS11 + (1 – S22)S21dS12 + (1 – S22)S12dS21 

    + S12S21dS22]/[(1 – S11)(1 – S22) – S12S21]
2 (12)

dZ21 = 2Z0[(1 – S22)S21dS11 + S21
2dS12 + (1 – S11)(1 – S22)dS21 

    + (1 – S11)S21dS22]/[(1 – S11)(1 – S22) – S12S21]
2 (13)

while dZ22, dZ12 result from

(12), (13) by application of
the mentioned substitutions. 

Results

Six calibration standards,
in  pairs  of  opposite  sex,
were used and their manufac-
turers' data were substituted
in the developed expressions:

A = –1 = A', 0 ≤ d|A| = d|A'| ≤ 

0.01, –180° ≤ dφA 
= dφA' ≤ –178°

or 178° ≤ dφA = dφA' ≤ 180°,

B = 0 = B', |dB| = 0.029 = |dB'|,

C = 1 = C', –0.01 ≤ d|C| = d|C'| 

≤ 0 and –2° ≤ dφC = dφC' ≤ +2°.

The inaccuracy of any VNA
measurement  was  conserva-
tively considered  as a sym-
metric  interval  defined  by
just 1 unit in the last place
of  the  corresponding  man-
tissa,  both  in  modulus  and
argument.  Consequently,  each

S–DER is a sum of 20 paral-
lelograms and 2 circles, with
a contour of 160 vertices at
most [4]. 

To demonstrate the method,
a typical T–network of common
resistors  with  nominal  DC
values Z1 = 24.2 Ω, Z2 = 120 Ω

for the horizontal  arms and
Z12=1.1 Ω for the vertical arm,

were soldered on type–N base
connectors  of  opposite  sex
and enclosed in an aluminium
box, to form a two–port DUT.

The VNA measurement system
was extended by two transmis-
sion lines of 3.66 m and 14 m,
respectively, up to the DUT.
The DUT was tested from 2 to
1289 MHz in 13 MHz steps. The
frequency  1003 MHz  was  se-
lected to illustrate the pro-
posed method for S–DERs shown
in Fig. 1. 
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To study the total differ-
ential error, dS was expressed
as dU + dI, where dU is due to
the  uncertainty  of  6  stan-
dards and dI to the inaccu-
racy of 16 measurements. The
contribution  of  these,  con-
servatively  considered  mea-
surement inaccuracies to the
total  differential  error  is
as  much  significant  as  the
uncertainties  of  standard
loads are. For example, com-
putations  for  S12 over  the

whole  measurement  band  show
that max|dU| and max|dI| con-
tribute ~35%–80% and ~25%–70%
to  max|dS12|,  respectively.

In addition, Fig. 1 shows how
the projections of each S–DER
result its real and imaginary
DEI. To display the variation
of S–DER against frequency, a
number  of  selected  S–DER
frames are shown in Fig. 2 as
beads on a space–curved fila-
ment. It is worth mentioning
that  S11–DER  (S22–DER)  was

greater than it resulted from
appropriately  organized  full
one–port measurements, as it
was  expected.  Finally,  the
computed Z–DEIs are shown in
Fig. 3, along with their LF
Z–values. 

Fig.1: S–DERs at 1003 MHz
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Fig.2: S–DERs against frequency 
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Fig.3: Z–DEIs against frequency

Conclusion

The proposed method may be
efficiently used to estimate

uncertainties  in  any  case
where  the  process  equations
(1), (2) and (4), (5) can find
application.

THURSDAY 31 OCTOBER 2013 v4—29 FUNKTECHNIKPLUS # JOURNAL

N.I. YANNOPOULOU, P.E. ZIMOURTOPOULOS

References
 

[1] Ballo  D.,  "Network  Analyzer  Basics",  Hewlett–Packard
Company, 1998, p. 58 

[2] Fitzpatrick J., "Error Models for Systems Measurement",
Microwave Journal, 21, May 1978, pp. 63-66

[3] Stumper U., "Influence of TMSO calibration standards un-
certainties  on  VNA  S–parameters  measurements",  IEEE
Transactions on Instrumentation and Measurements, Vol.
52, No. 2, April 2003, pp. 311-315 

[4] Yannopoulou N., Zimourtopoulos P., "Total Differential
Errors  in  One–Port  Network  Analyzer  Measurements  with
Application to Antenna Impedance", arXiv:physics/0703204,
Radioengineering, Vol. 16, No. 2, June 2007,.pp. 1-8 

[5] Beatty R.W., Kerns D.M., "Relationships between Differ-
ent Kinds of Network Parameters, Not Assuming Reciproc-
ity or Equality of the Waveguide or Transmission Line
Characteristic  Impedances",  Proceedings  of  the  IEEE,
Vol. 52, Issue 1, January 1964, p. 84 

Preprint Versions

Total Differential Errors in One-Port Network Analyzer
Measurements with Application to Antenna Impedance

Nikolitsa Yannopoulou, Petros Zimourtopoulos

 "http://arxiv.org/abs/physics/0703204" 

Follow-Up Research Paper

S-Parameter Uncertainties in Network Analyzer Measurements
with Application to Antenna Patterns

N. Yannopoulou, P. Zimourtopoulos 

Radioengineering, April 2008, Volume 17, Number 1

www.radioeng.cz/papers/2008-1.htm
www.radioeng.cz/fulltexts/2008/08_01_01_08.pdf

Previous Publication in FUNKTECHNIKPLUS # JOURNAL

"Measurement Uncertainty in Network Analyzers: 
Differential Error Analysis of Error Models Part 1: 

Full One-Port Calibration", Issue 1, pp. 17-22

____________________________________________________________________________
This paper is licensed under a Creative Commons Attribution 4.0

  International License — https://creativecommons.org/licenses/by/4.0/  

FUNKTECHNIKPLUS # JOURNAL v4—30 ISSUE 1 — YEAR 1



[ This Page Intentionally Left Blank ]

MONDAY 30 SEPTEMBER 2013 e4—31 FUNKTECHNIKPLUS # JOURNAL

In case of any doubt,
download the genuine papers from

 

genuine.ftpj.otoiser.org

FRONT COVER VIGNETTE

A faded synthesis of an anthemion rooted in a meandros

The thirteen-leaf is a symbol for a life tree leaf.
"Herakles and Kerberos", ca. 530—500 BC,

by Paseas, the Kerberos Painter,
Museum of Fine Arts, Boston.

www.mfa.org/collections/object/plate-153852

The simple meandros is a symbol for eternal immortality.
"Warrior with a phiale", ca. 480—460 BC,

by Berliner Maler,
Museo Archeologico Regionale "Antonio Salinas" di Palermo.

commons.wikimedia.org/wiki/File:Warrior_MAR_Palermo_NI2134.jpg

FUNKTECHNIKPLUS # JOURNAL e4—32 ISSUE 1 — YEAR 1


